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a b s t r a c t

This paper deals with the problem of robust reliable energy-to-peak controller design

for seismic-excited buildings with actuator faults and parameter uncertainties. It is

assumed that uncertainties mainly exist in damping and stiffness of the buildings

because they are difficult to be measured precisely. The objective of designing

disturbance from earthquake excitation. Energy-to-peak performance is believed to be

of great significance when conditions and requirements of active building vibration

control are carefully considered. Based on energy-to-peak control theory and linear

matrix inequality techniques, a new approach for reliable building vibration control

with satisfactory energy-to-peak performance is presented. An n-degree-of-freedom

linear building structure under earthquake excitation is analyzed and simulations are

employed to validate the effectiveness of the proposed approach in reducing seismic-

excited building vibration. Some comparisons are also made between energy-to-peak

control systems and H1 control systems to further prove the importance of the method

raised in this paper.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, vibration control problem of tall buildings has attracted considerable attention because strong earthquakes
and tsunamis, such as 2008 Wen Chuan Earthquake and 2007 Indonesia Tsunami, happen frequently. Traditional methods
of building vibration control include base isolation [1], many different kinds of dampers [2,3], and various types of bracings
[4], but all of them belong to passive or semi-active control methods. However, as buildings become higher and higher,
traditional mechanical methods cannot guarantee the structural stability and solidity of seismic-excited and wind-excited
buildings. Therefore, active vibration control methods have been heatedly discussed in recent years because of their
excellent control performances [5–9].

Realizing the significance of building vibration control and the advantage of active vibration control, many scholars
have applied themselves to the research of active vibration control methods in recent years and many control techniques
have been utilized. To illustrate, optimal control [10,11], PID control [12,13], classical H2 and H1 control [14–16], sliding
model control [12,17], neural networks [18], and fuzzy logic [19,20], have all been developed to attenuate the vibration of
seismic-excited or wind-excited buildings. Moreover, some modern approaches have been applied to improve the
performance of vibration control systems. For instance, pole placement and mixed H2=H1 control have been used to gain
better control effect [21–23], and genetic algorithms have been used to find feasible and optimal solutions to vibration
ll rights reserved.
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control problems [14,19]. With the development of control theory, many practical constraints, such as actuator saturation
[3], parameter uncertainties [24,25], time delay in measurements or actions [14,26,27], have been considered in order to
make control systems more applicable to real buildings. All these approaches play an important role in building vibration
control against earthquakes or wind.

An important problem in active vibration control is that control component faults, such as actuator faults and sensor faults,
often occur in the implementation of real control systems. These faults often result in unsatisfactory control performances and
even unexpected instability of control systems. Moreover, parameters used by engineers to design controllers cannot always be
measured precisely. These uncertainties in parameters often lead to the fact that the performances of designed control systems
are not so nice as we expect. To deal with the problems of control component faults and parameter uncertainties, many scholars
have discussed the concept and methods of reliable control with uncertainties [28–33]. All these approaches help to ensure the
performances of control systems.

All the works mentioned above perform effectively in building vibration attenuation. However, it is worth mentioning
that most of the reported approaches are based on the theory of robust H1 control, which cares about the energy-to-
energy performance of closed-loop systems. For seismic-excited or wind-excited buildings, it is often the excessive peak
values of controlled outputs such as displacements or accelerations that make them collapse. Therefore, for building
vibration control, a better control performance can be expected if energy-to-peak performance is taken into consideration,
which has been studied by many scholars [26,34–40].

Considering the advantage of energy-to-peak control and the necessity of reliable control, we try to design robust
reliable energy-to-peak controllers against actuator faults and parameter uncertainties, in order to better attenuate
the vibration of seismic-excited buildings. In this paper, we consider a n-degree-of-freedom (n-dof) linear building
structure under earthquake excitation. Based on Newton’s second law, a state space model of buildings with parameter
uncertainties is firstly established. Then, using Lyapunov approach, we consider a method for designing robust reliable
controllers against actuator failures to get satisfactory energy-to-peak performance. By using the results in [34,35,38],
we further develop the existence conditions for robust reliable controllers with parameter uncertainties in the form of
linear matrix inequalities (LMIs). The energy-to-peak controller design problem is transformed into a convex feasibility
problem subject to LMI constraints, which can be solved directly by MATLAB LMI Toolbox. If the feasibility problem is
solvable, desired controllers can be obtained. We also put forward a method of designing robust reliable H1 controllers
against actuator faults for further comparisons. Furthermore, we use some illustrative examples to show the effectiveness
of our method by comparing displacements and accelerations of buildings with energy-to-peak controllers and those
without any controllers under the same earthquake excitation. We finally compare performances between closed-loop
systems with energy-to-peak controllers and those with H1 controllers to further prove the validity of the method
proposed in this paper.

The rest of this paper is organized as follows. In Section 2, a state space model of an n-dof linear building structure
under earthquake excitation is established, and the robust reliable energy-to-peak controller design problem is formulated.
In Section 3, approaches for designing such controllers are put forward. Section 4 gives simulations to illustrate the
effectiveness and applicability of the method proposed in this paper. Finally, conclusions are drawn in Section 5 and proof
of the proposed theorems is given in appendix.

Notation: Rn means the n-dimensional Euclidean space and Rn�m denotes the set of all n�m real matrices; for a matrix
Q, QT, Q�1 and Q? denote its transpose, inverse, and orthogonal complement, respectively; the notation Q 40ðo0Þ is used
to denote that Q is real symmetric and positive (negative) definiteness; and [Q]F denotes Q+QT. JGJ1 denotes the
H1�norm of transfer function matrix G(s). I and 0 are used to denote the identity and the zero matrices, respectively, of
appropriate dimensions. In symmetric block matrices or complex matrix expressions, we use an asterisk (�) to represent a
term that is induced by symmetry and diag{y} stands for a block-diagonal matrix. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic operations.

2. Problem formulation

In this section, we are going to establish a model of seismic-excited buildings and formulate the reliable energy-to-peak
control problem.

2.1. System description

Consider a n-dof linear building structure under earthquake excitation. The building model is shown in Fig. 1, in which
€xgðtÞ is the ground acceleration; mi, ci, ki, qi and ui (i=1,2,3,y,n) are the mass, damping, stiffness, relative drift and control
force of each storey, respectively.

According to Newton’s second law, the dynamic equation of seismic-excited building motion can be written as

M0 €qðtÞþC0 _qðtÞþK0qðtÞ ¼H0uðtÞþn0 €xgðtÞ, (1)

where qðtÞ 2 Rn, qðtÞ ¼ ½q1ðtÞ q2ðtÞ q3ðtÞ . . . qnðtÞ�
T , q1(t) is interstorey relative drift between the first floor and ground, and

qi(t) is interstorey relative drift between the ith floor and (i�1)th floor, i=1,2,3,y,n; u(t) is the control input, uðtÞ 2 Rm

gives m control inputs, and here it is supposed that there is one control force embedded at the bottom of each storey, so
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Fig. 1. n-dof building model.
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that uðtÞ ¼ ½u1ðtÞ u2ðtÞ u3ðtÞ . . .umðtÞ�
T ; €xgðtÞ 2 R

1 is the ground acceleration caused by earthquakes, which is defined as the
disturbance input wðtÞ 2 R1, that is, wðtÞ ¼ €xgðtÞ; M0 2 R

n�n, C0 2 R
n�n, and K0 2 R

n�n are the mass, damping and stiffness
matrices, respectively; n0 2 R

n is a vector representing the influence of earthquake excitation to each floor; H0 2 R
n�m

gives the location of the m controllers.
By defining the state variables x¼ ½qðtÞ _qðtÞ�T , we get that dynamic equation (1) can be expressed in the state space form

as below:

_xðtÞ ¼AxðtÞþBuuðtÞþBwwðtÞ, (2)

where

A¼
0 I

�M�1
0 K0 �M�1

0 C0

" #
, Bu ¼

0

M�1
0 H0

" #
, Bw ¼

0

M�1
0 n0

" #
:

Then the building vibration control system can be described as

_xðtÞ ¼AxðtÞþBuuðtÞþBwwðtÞ,

zðtÞ ¼ CxðtÞ, (3)

where zðtÞ 2 Rp is the controlled output, p is the number of outputs, and C 2 Rp�n is a constant matrix.
Since the damping and stiffness of buildings cannot be measured easily and precisely, while the mass of buildings can

be measured precisely, parameter uncertainties in control systems mainly locate in matrix A. We take DA to represent the
system uncertainties with the same dimensions as that of A, similar to [41], DA is assumed to be norm-bounded, that is

JDAJra: (4)

Therefore, the building vibration control system with parameter uncertainties can be described as

_xðtÞ ¼ ðAþDAÞxðtÞþBuuðtÞþBwwðtÞ,

zðtÞ ¼ CxðtÞ: (5)

When considering possible actuator faults in the control system, we introduce a state-feedback controller in the form of

uðtÞ ¼KxðtÞ ¼MaKaxðtÞ, (6)

where Ka is the actuator fault-tolerant feedback controller gain to be designed later. Actuator failures are described by fault
matrix Ma=diag{ma1, ma2, ma3,y,man}, where mai (i=1,2,3,y,n) represents possible faults in the actuators of each floor and
0rmalirmaiðtÞrmauio1, mali and maui are known real constraints. If mali=maui=0, then mai(t) =0, which means that the
corresponding actuator is completely broken down. To the opposite, if mali=maui=1, it is obvious that mai(t) =1, which
indicates that there is no fault in a certain actuator. Otherwise, if 0omaliomaui and maiðtÞa1, there exists partial fault in
the corresponding actuator.

According to (5) and (6), the closed-loop system can be written as

_xðtÞ ¼ ðAþDAÞxðtÞþBuMaKaxðtÞþBwwðtÞ
¼ ðAþDAþBuMaKaÞxðtÞþBwwðtÞ,

¼ AxðtÞþBwwðtÞ,
zðtÞ ¼ CxðtÞ: (7)
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2.2. Formulation of energy-to-peak control problem

In this paper, the disturbance signal w(t) is assumed to be bounded with finite energy, that is,

JwðtÞJ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1
t ¼ 0
jwðtÞj2 dt

s
o1: (8)

Here, (8) is a reasonable assumption, which can be satisfied by most earthquakes. It is also assumed that the peak response
quantity of the controlled output is bounded, that is,

JzðtÞJ1 ¼ sup
t2½0,1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zðtÞTzðtÞ

q
o1: (9)

Based on the analysis above, the problem to be studied in this paper can be illustrated as follows. Considering the
uncertain seismic-excited building model in (5), we aim at putting forward a feasible method for designing a robust
reliable energy-to-peak controller (6) and seeking the corresponding controller gain K, such that the closed-loop system is
asymptotically stable, and for a given performance index g40, the energy-to-peak performance

JzðtÞJ1ogJwðtÞJ2 (10)

is satisfied for any w(t) given by (8).

3. Controller design

In this section, the robust reliable energy-to-peak controller design problem is analyzed. A new method is brought
forward for designing a feasible controller such that the closed-loop system is asymptotically stable and the energy-to-
peak performance in (10) is satisfied. At the same time, a method for designing a robust reliable H1 controller is also put
forward for further comparison.

3.1. Robust reliable energy-to-peak controller design

First, some lemmas that are useful for later controller design are given below. Their proofs and applications can be
found in [34,35,42].

Lemma 1 (Grigoriadis and Watson [34], Du and Lam [35]). Consider a linear system

_xðtÞ ¼AxðtÞþBuuðtÞþBwwðtÞ,

zðtÞ ¼ CxðtÞ: (11)

Suppose ðA,Bu,Bw,CÞ 2 R is arbitrary but fixed and let g40 be given. Then closed-loop system (7) is asymptotically stable and

the energy-to-peak performance in (10) is satisfied for any w(t) given by (8) if and only if there exists a symmetric matrix X40
satisfying

AXþXA
T
þBwBT

wo0, (12)

and

CXCTog2I: (13)

Lemma 2 (Yao et al. [42]). Let E,F and R are matrices of appropriate dimensions with JRJr1. Then, for any scalar e40,

ERFþFTRTETre�1EET
þeFTF: (14)

Lemma 3 (Yao et al. [42]). For a time-varying diagonal matrix UðtÞ ¼ diagff1ðtÞ, f2ðtÞ, . . . ,fmðtÞg and two matrices R and S,
if jUðtÞjrV, where jUðtÞj ¼ diagfjf1ðtÞj, jf2ðtÞj, . . . ,jfmðtÞjg and V40 is a known diagonal matrix then for any scalar e40,

RUSþSTUTRTre�1STVSþeRVRT: (15)

Next, we introduce the following matrices that will be used in our later development.

Ma0 ¼ diagfma01,ma02,ma03, . . . ,ma0ng,

La ¼ diagfla1,la2,la3, . . . ,lang,

Ja ¼ diagfja1,ja2,ja3, . . . ,jang,
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where ma0i ¼ ðmaliþmauiÞ=2, lai ¼ ½maiðtÞ�ma0i�=ma0i, and jai ¼ ðmaui�maliÞ=ðmauiþmaliÞ with i=1,2,3,y,n. According to the
definition, we have

Ma ¼Ma0ðIþLaÞ, (16)

LT
aLar JT

aJarI: (17)

Then, we put forward the following theorem to solve the reliable controller design problem for seismic-excited buildings.

Theorem 1. Consider building vibration control system (5) with robust reliable energy-to-peak state-feedback controller (6),
closed-loop system (7) is asymptotically stable and the energy-to-peak performance in (10) is satisfied for a given performance

index g40 and for all w(t) given by (8), if there exist positive symmetric matrix X, matrix S and positive scalars e1,e2 satisfying

X X ST Bw

* �e1I 0 0

* * �e2J�1
a 0

* * * �I

2
66664

3
77775o0, (18)

X XCT

* c2I

" #
40, (19)

where

X9AXþXAT
þBuSSTBT

uþe1a2Iþe2BuJT
aBT

u:

The desired control law is given by

Kal ¼M�1
a0 SX�1: (20)

The proof of this theorem can be seen in the appendix.

Remark 1. Theorem 1 provides us a process to design robust reliable energy-to-peak controllers with actuator faults and
parameter uncertainties. Closed-loop system (7) will be asymptotically stable and the energy-to-peak performance in (10)
will be satisfied if Lemma 1 holds. However, Lemma 1 cannot be directly used to design controllers due to the parameter
uncertainties in matrix A and some possible actuator faults. Therefore, it is necessary to make some transformations before
Lemma 1 is used. Firstly, in order to solve the problem of parameter uncertainties, we use Lemma 2 to find the upper
bound of the uncertainty and replace the uncertain part with its upper bound. Furthermore, a proper form is chosen to
describe the possible actuator faults. Then Lemmas 2 and 3 are used to substitute the time-variant part with its time-
invariant upper bound. Through out the process mentioned above, the initial problem of designing controllers under
uncertain and time-variant conditions, which are almost impossible to be solved, is transformed into the final problem of
designing controllers under certain and time-invariant conditions, which can be handled by the available approaches.
Finally, we transform requirements (31) into two LMIs (18) and (19), which can be easily solved with the help of MATLAB
LMI Toolbox.

Remark 2. The energy-to-peak performance index g should be specified before designing robust reliable energy-to-peak
controllers with Theorem 1. When a certain g is given, our work is to find positive symmetric matrix X, matrix S and
positive scalars e1, e2 satisfying LMIs (18) and (19). If feasible solutions are found, we can get the desired controller gain Kal

by (20) and thus the entire problem can be solved.

Till now, we have proposed a theorem to solve the robust reliable energy-to-peak controller design problem. We can
obtain desirable controllers by solving the LMI conditions in Theorem 1 so that the corresponding energy-to-peak
performance can be satisfied. In order to testify the advantages of our controllers with satisfactory energy-to-peak
performance, we will present a possible way to design robust reliable H1 state-feedback controllers under the same
conditions, and it will be used in future comparision.

3.2. Robust reliable H1 controller design

In this subsection, our attention is focused on designing robust reliable H1 controllers such that the asymptotic stability
of closed-loop system (7) is guaranteed and the H1 norm of the closed-loop transfer function G(s) satisfies

JGðsÞJ1 ¼ sup
o
smaxðGðjoÞÞ ¼

JzðtÞJ2

JwðtÞJ2
oZ, (21)

where Z is a given positive scalar. For seismic-excited building vibration control systems, in terms of the design objective,
we aim at minimizing JGðsÞJ1. The following lemma will be used in the design of robust reliable H1 controllers.



W. Zhang et al. / Journal of Sound and Vibration 330 (2011) 581–602586
Lemma 4 (Grigoriadis and Watson [34]). Suppose ðA,Bu,Bw,CÞ 2 R in (11) is arbitrary but fixed and let Z40 be given. Closed-

loop system (7) is asymptotically stable and JGðsÞJ1oZ is satisfied for any w(t) given by (8), if and only if there exists a

symmetric matrix W40 satisfying

A
T
WþWA WBw CT

* �I 0

* * �Z2I

2
664

3
775o0: (22)

Theorem 2. Consider a building vibration control system with robust reliable H1 state-feedback controller (6), closed-loop

system (7) is asymptotically stable and JGðsÞJ1oZ is satisfied, if there exist positive symmetric matrix X, matrix Y and positive

scalars e3, e4 satisfying

C X Y XBw CT

* �e3I 0 0 0

* * �e4J�1
a 0 0

* * * �I 0

* * * * �Z2I

2
66666664

3
77777775
o0, (23)

where

C9AXþXAT
þBuYþYTBT

uþe3a2Iþe4BuJT
aBT

u:

Moreover, the desired control law is given by

Kah ¼M�1
a0 YX�1: (24)

The proof of this theorem can be seen in the appendix.
Different from the utilization of Theorem 1, we can solve the problem of designing robust reliable H1 controllers in two

aspects. One aspect is designing suboptimal H1 controllers: we aim at seeking state-feedback controllers for a given H1
performance index Z, so that the corresponding closed-loop system (7) is asymptotically stable and (21) is satisfied. The
other is designing optimal H1 controllers: our goal is to look for state-feedback controllers in order to minimize JGðsÞJ1.
Since optimal controllers are usually better in attenuating disturbances, we choose to look for optimal robust reliable H1
controllers in illustrative examples.

We use the following remark to summarize this section and make some expections for the next section.

Remark 3. For building vibration control systems, all the state variables are supposed to be measurable. Under such
assumption, we bring forward two theorems to design robust reliable state-feedback controllers. By solving the feasibility
problem of LMIs shown in Theorems 1 and 2, we can eventually obtain the robust reliable energy-to-peak controllers and
the robust reliable H1 controllers. We believe that the robust reliable energy-to-peak controllers will have satisfactory
performance in vibration attenuation because they focus on decreasing the peak value of the controlled outputs such as
displacements and accelerations, which will be more helpful to protect buildings in strong earthquakes. We will give
several illustrative examples to prove the effectiveness of our ideas in the next section. First, feasible robust reliable
energy-to-peak controllers for a given energy-to-peak performance index g will be designed under some different fault
conditions and we will make comparisons between performances of closed-loop systems with energy-to-peak controllers
and those of open-loop systems. The simulations contain two cases with different controlled outputs, which indicate the
wide use of reliable energy-to-peak controllers. Second, optimal robust reliable H1 controllers will be designed under the
same fault conditions. If control performances of the feasible robust reliable energy-to-peak controllers are better than
those of the optimal robust reliable H1 controllers, the effectiveness of our method will be further proved.
4. Illustrative example

In this section, we are going to employ simulations to show the effectiveness of the robust reliable energy-to-peak
controllers in building vibration attenuation. The data of El Centro 1940 earthquake are used as the excitation signal
(see Fig. 2). We design controllers by using the approaches presented in Section 3.

In the simulations, a three-storey shear-beam building model considered in [35] is studied. The active bracing systems
(ABSs) are installed on each floor, respectively. Here, it is assumed that the masses, damping and stiffness coefficients are
identical for each storey unit and given as mi=1 t, ci ¼ 1:407 kN s=m and ki=980 kN/m, where i=1, 2, 3. It is also assumed the
initial state x(0)=[0,0,0,0,0,0]T. Similar to (1), the dynamic equation of the three-storey shear-beam building model is



0 10 20 30 40 50 60
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Ground Acceleration (g)

Time (s)

Fig. 2. El Centro 1940 earthquake.
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obtained as follows:

M0 ¼

m1 0 0

m2 m2 0

m3 m3 m3

2
64

3
75, C0 ¼

c1 �c2 0

0 c2 �c3

0 0 c3

2
64

3
75, K0 ¼

k1 �k2 0

0 k2 �k3

0 0 k3

2
64

3
75,

n0 ¼

�m1

�m2

�m3

2
64

3
75, H0 ¼

1 0 0

0 1 0

0 0 1

2
64

3
75:

Other parameters are listed as follows: considering parameter uncertainties in the form of (4), it is supposed that
a¼ 0:01; for the description of actuator faults, it is supposed that mali=0.2, maui=1.2, where i=1, 2, 3, and then we get
Ma0=diag{0.7, 0.7, 0.7}.

To simulate the actuator fault conditions, it is assumed that faults occur periodically, and the percentage scalar DðtÞ of
the signal loss is defined as

DðtÞ ¼
d, kTotrkTþ ft ,

0 percent, kTþ ft otr ðkþ1ÞT,

(
k¼ 0,1,2,3 . . . , (25)

where T is a known time period, ft is a section of T ð0r ft oTÞ, which informs how much time there exists faults in a period,
and d is the percentage of the signal loss when faults exist. According to the definition above, the fault condition can be
described as follows: during the first part of each period ðkTotrkTþ ftÞ, faults exist and the percentage of signal loss is d;
in the second part of each period ðkTþ ft otrðkþ1ÞTÞ, no faults exist and the control system works normally. As is
mentioned above, if ft is longer or d is larger, faults in the control system are more serious.

In the following, two cases with different controlled outputs will be shown to illustrate the effectiveness of energy-to-
peak control of building vibration, and some comparisons will be made between closed-loop systems with energy-to-peak
controllers and those with H1 controllers to further prove the method proposed in this paper. For the sake of comparison,
the robust reliable energy-to-peak controllers are denoted as controller L, and the robust reliable H1 controllers are
denoted as controller H. Time response curves of the interstorey drifts and accelerations for each case are plotted. The
differences of control performances can be compared by the peak values of interstorey drifts and accelerations, as well as
the duration of building vibration, which will be shown in the figures of the following part. For both of the cases, it is
supposed that all the state variables are measurable. In Case A and B, we will first make comparisons between the
performances of closed-loop systems with energy-to-peak controllers and those of open-loop systems.
4.1. Case A: Full interstorey drift output

In this case, we choose the interstorey drift of each floor as the controlled outputs, that is, z¼ ½q1 q2 q3�
T.
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We first designate the energy-to-peak performance index g¼ 0:02. After solving the linear matrix inequalities in (18)
and (19), the gain matrix of Controller L is obtained

Kal ¼ 105
�

�3:7914 �0:5410 �0:4729 �0:6203 �0:0942 �0:0405

�3:1740 �4:6198 �0:6493 �0:7234 �0:6697 �0:0989

�2:8948 �4:2988 �4:6304 �0:7694 �0:7289 �0:6301

2
64

3
75:

After obtaining Controller L, we make comparisons between closed-loop systems equipped with Controller L and open-
loop systems to illustrate the effectiveness of robust reliable energy-to-peak control through some simulations. Firstly, we
draw the frequency response of energy-to-peak control system and open-loop system in Fig. 3.

Then, we begin some simulations in time domain. It is supposed that T=5 s. Two different fault conditions will be
discussed below:

Case A1 : ft ¼ 1 s,d¼ 20 percent ð20 percent loss of the actuator thrustÞ;

Case A2 : ft ¼ 3 s,d¼ 100 percent ð100 percent loss of the actuator thrustÞ:

We want to emphasize that in most cases, even if actuator faults happen, the actuator will just loss part of its thrust, but
it will seldom work in reverse to the command control sign. So we choose Case A2, in which actuator loss all its thrust, and
we believe that if the energy-to-peak control system is proved to be effective in this case, the proposed method can be
implemented into practical building vibration control systems. Time responses of the interstorey drifts and accelerations of
the three floors under the two subcases are described in Figs. 4–11.

Figs. 4–11 depict the time responses of the interstorey drifts, relative accelerations, and control forces of the three floors
under El Centro 1940 earthquake excitation in Case A, where ‘‘open-loop’’ refers to the case of no control force being
applied to the building structure, and ‘‘L2�L1 control’’ indicates the use of robust reliable energy-to-peak control
approaches presented above. Figs. 4, 5, 8, 9 clearly demonstrate that Controller L results in less peak value and shorter
duration of vibration among the two drift curves of each floor. The relative accelerations of the three floors are depicted in
Figs. 6 and 10, and Controller L also holds less peak value and shorter duration of vibration. We also plot the control forces
in Figs. 7 and 11. In a word, although there exist actuator faults and parameter uncertainties in the closed-loop systems, it
can be seen from Figs. 4–11 that improved responses are obtained for the interstorey drifts and accelerations of the three
floors under reliable energy-to-peak control compared with the open-loop system. It is clear that actuator completely
losses its thrust in Case 2, but the controlled outputs are still very satisfying, which indicates that robust reliable energy-to-
peak controllers can be successfully used in different cases of actuator faults.
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4.2. Case B: Full relative velocity output

In this case, we choose the relative velocity of each floor as the controlled outputs, that is, z¼ ½ _q1 _q2 _q3�
T.

We first designate the energy-to-peak performance index g¼ 0:3. After solving the linear matrix inequalities in (18) and
(19), the gain matrix of Controller L is

Kbl ¼ 107
�

�1:2362 2:2028 �1:2727 �0:0336 0:0586 �0:0213

1:0760 �2:5882 2:2361 0:0164 �0:0635 0:0560

�0:2380 0:9839 �1:2353 �0:0039 0:0174 �0:0386

2
64

3
75:
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After obtaining Controller L, we also make comparison between closed-loop systems equipped with Controller L and
open-loop systems to illustrate the effectiveness of robust reliable energy-to-peak control. First, we draw the frequency
response of energy-to-peak control system and open-loop system in Fig. 12.
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Then, two different fault conditions will be discussed below. It is also supposed that T=5 s. Two fault conditions, will be
discussed below:

Case B1 : ft ¼ 1 s, d¼ 20 percent ð20 percent loss of the actuator thrustÞ;

Case B2 : ft ¼ 3 s, d¼ 80 percent ð80 percent loss of the actuator thrustÞ:

Time responses of the interstorey drifts and accelerations of the three floors under the two cases are described in
Figs. 13–18.

Similar to Case A, Figs. 13 and 16 depict the drift curves of each floor, and the relative accelerations of the three
floors are depicted in Figs. 14 and 17. Control forces are also plotted in Figs. 15 and 18. Although the performances of
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energy-to-peak controllers are not as good as those in Case A, the significance of using such controllers can still be found
because of their help in keeping closed-loop systems stable, reducing the peak value of drifts and accelerations, and
shortening the duration of vibration.

4.3. Discussion about Case A and Case B

Based on the figures of interstorey drifts and accelerations, Cases A and B have shown the effectiveness of robust
reliable energy-to-peak control systems in building vibration control in comparison with open-loop systems. By the
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comparison, we can get that the performances of closed-loop systems are much better than those of open-loop systems in
different fault conditions. Different controlled outputs are chosen to justify that the energy-to-peak controllers can be
trustworthy according to the conditions and requirements of real building vibration control systems. We can therefore
ensure the effectiveness of the method raised in this paper. Moreover, with fast progress of computers’ processing speed,
this energy-to-peak control approach in the form of LMIs is applicable to real control systems.

4.4. Comparison between energy-to-peak control and H1 control

Here in particular, we would like to make comparisons between robust reliable energy-to-peak control and widely used
robust reliable H1 control to further verify the good performances of the former. Let us take the same parameters as Case
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A, and the gain matrix of Controller L has been obtained in Case A

Kal ¼ 105
�

�3:7914 �0:5410 �0:4729 �0:6203 �0:0942 �0:0405

�3:1740 �4:6198 �0:6493 �0:7234 �0:6697 �0:0989

�2:8948 �4:2988 �4:6304 �0:7694 �0:7289 �0:6301

2
64

3
75:
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The gain matrix of Controller H is obtained

Kah ¼ 104
�

�0:3043 �0:0779 �0:1372 �0:9237 �0:3794 �0:2098

0:0158 �0:4971 �0:0892 �1:3034 �1:1338 �0:3797

0:1670 �0:3170 �0:5153 �1:5133 �1:3035 �0:9239

2
64

3
75,

and the corresponding minimum JGðsÞJ1 is Zmin ¼ 0:0624.
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Two fault conditions will be studied below:

Case 1 : ft ¼ 1 s, d¼ 20 percent ð20 percent loss of the actuator thrustÞ;

Case 2 : ft ¼ 3 s, d¼ 80 percent ð80 percent loss of the actuator thrustÞ:

Time responses of the interstorey drifts and accelerations of the three floors under the two cases are described in
Figs. 19–24.
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Figs. 19, 20, 22, 23 depict the drift curves of each floor, which demonstrate clearly that Controller L leads to less peak
value and shorter duration of vibration, compared with Controller H. The relative accelerations of the three floors are
depicted in Figs. 21 and 24, which also present better performances of Controller L in comparison with Controller H.
Figs. 19–24 demonstrate that the energy-to-peak controllers can reduce the peak values of attenuation effectively and
shorten the duration of vibration compared with the energy-to-energy controllers. The effectiveness of energy-to-peak
control is completely proved.
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5. Conclusions

This paper has presented a method to design robust reliable energy-to-peak state-feedback controllers with actuator
faults and parameter uncertainties for seismic-excited building vibration attenuation. Energy-to-peak performances of
closed-loop systems are carefully analyzed. The objective to guarantee the asymptotic stability of closed-loop systems and
attenuate building vibration caused by earthquakes has been achieved by solving the LMIs in the theorems.

Simulations of a 3-dof linear building structure have been employed to illustrate the effectiveness of the energy-to-peak
control approach. Two different controlled outputs have been presented in the simulations, and different performances of
closed-loop systems with energy-to-peak controllers and open-loop systems have been shown through the peak values of
interstorey drifts and accelerations, as well as the duration of building vibration. Different controlled outputs can be
chosen according to special requirements and constraints of real systems. The results of the simulations have
demonstrated that energy-to-peak control for seismic-excited buildings has great effectiveness in comparison with
open-loop systems. Comparisons have also been made between robust reliable energy-to-peak control and robust reliable
H1 control through simulations which has further proved the effectiveness of the method proposed in this paper.

Since the algorithm developed in this paper is not very complex, we can expect it to be used in real building vibration
control systems with the rapid development of sensors, processors, and actuators, and we want to do some experimental
study to further check the effectiveness of the proposed method. After the similarities of the influence between wind and
earthquakes on building vibration are taken into consideration, the approach of this paper can be promoted to the
attenuation of wind-excited building vibration. Some future directions include consideration of time delay in
measurements and actions, saturation of actuators, and synthesis of different building vibration control methods.
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Appendix

In the appendix, we will give proofs of the two theorems in this paper.
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A.1. Proof of Theorem 1
Proof. According to Lemma 1 and Lemma 2, in order to design an energy-to-peak controller, we need to guarantee that

there exists a symmetric matrix X40 satisfying AXþXA
T
þBwBT

wo0 and CXCTog2I for closed-loop system (7). Since

uncertainties exist in matrix A, we need to find the upper bound of AXþXA
T
þBwBT

w and then we can use this upper bound

to design controllers. According to this idea, together with Lemma 1 and (7), in this paper, we get

AXþXA
T
¼ ðAþDAþBuMaKaÞXþXðAT

þDT
AþKT

aMT
aBT

uÞ: (26)

According to (16), (26) can be further described as

AXþXA
T
¼ ½AþDAþBuMa0ðIþLaÞKa�XþX½AT

þDT
AþKT

aðIþLT
aÞM

T
a0BT

u�

¼ ðAXþXAT
ÞþðDAXþXDT

AÞþðBuMa0KaXþXKT
aMT

a0BT
uÞþðBuMa0LaKaXþXKT

aLT
aMT

a0BT
uÞ: (27)

Taking the structure of Ma0 and La into consideration, we can easily prove that Ma0La=LaMa0. Therefore, by defining

S9Ma0KaX,

we can get

AXþXA
T
¼ ðAXþXAT

ÞþðDAXþXDT
AÞþBuSþSTBT

uþBuLaSþSTLT
aBT

u: (28)

According to Lemma 2, for any scalar e140 and symmetric matrix X, we have

DAXþXDT
Are1DADT

Aþe
�1
1 XXre1a2Iþe�1

1 XX: (29)

By using Lemmas 2 and 3, for any scalar e240 and matrices S, we have

BuLaSþSTLT
aBT

ure2BuJT
aBT

uþe
�1
2 STJaS: (30)

Till now, we have

AXþXA
T
þBwBT

wrðAXþXAT
ÞþBuSþSTBT

uþe1a2Iþe�1
1 XXþe2BuJT

aBT
uþe

�1
2 STJaSþBwBT

w: (31)

Finally, we can see that if (31) holds, (12) will be guaranteed. Then, with the help of Schur complement, we come to the

conclusion that although parameter uncertainties exist, Lemma 1 will be satisfied if (18) and (19) hold, which indicates

that closed-loop system (7) is asymptotically stable and the energy-to-peak performance in (10) is satisfied. &

A.2. Proof of Theorem 2
Proof. Firstly, according to Lemma 4, we perform a congruence transformation to (22) by matrix diag[W�1,I,I]. By
denoting X=W�1, we get that (22) is equivalent to

AXþXA
T

Bw XCT

* �I 0

* * �Z2I

2
664

3
775o0:

Similar to the proof of Theorem 1, AXþXA
T

can be written as

AXþXA
T
¼ ðAþDAþBuMaKaÞXþXðAT

þDT
AþKT

aMT
aBT

uÞ: (32)

By (16) we know that (32) can be further described as

AXþXA
T
¼ ½AþDAþBuMa0ðIþLaÞKa�XþX½AT

þDT
AþKT

aðIþLT
aÞM

T
a0BT

u�

¼ ðAXþXAT
ÞþðDAXþXDT

AÞþðBuMa0KaXþXKT
aMT

a0BT
uÞþðBuMa0LaKaXþXKT

aLT
aMT

a0BT
uÞ:

Notice that Ma0La=LaMa0. Therefore, by defining

Y9Ma0KaX,

we can get

AXþXA
T
¼ AXþXAT

þDAXþXDT
AþBuYþYTBT

uþBuLaYþYTLT
aBT

u:

According to Lemma 2, for any scalar e340 and symmetric matrix X, we have

DAXþXDT
Are3DADT

Aþe
�1
3 XXre3a2Iþe�1

3 XX:
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By using Lemmas 2 and 3, for any scalar e440 and matrix Y, we have

BuLaYþYTLT
aBT

ure4BuJT
aBT

uþe
�1
4 YTJaY:

Till now, we have

AXþXA
T
rAXþXAT

þBuYþYTBT
uþe3a2Iþe�1

3 XXþe4BuJT
aBT

uþe
�1
4 YTJaY: (33)

Obviously Lemma 4 is guaranteed if (33) holds. Furthermore, by Schur complement we can know that Lemma 4 is

satisfied if (23) holds, which shows that the closed-loop system (7) is asymptotically stable and the H1 performance in (21)

is satisfied. &
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